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Abstract 

 This study evaluates two competing forecasting models of rates of returns and 
recommends the preferable model for academicians and practitioners.  In the first model, which 
was developed by Jacquier, Kane, and Marcus (2002), the forecast is a weighted mean between 
the geometric mean and the sum of the geometric mean and half the variance, where the weights 
are determined by the relative importance of the estimation period and the forecasting period.  
The second model, which is an adaption by Bodie, Kane, and Marcus (2008) of the first model, 
where the arithmetic mean is substituted for the sum of the geometric mean and half the 
variance.  This substitution is not explained or justified in any way.  The purpose of this paper is 
to explore the statistical significance and impact on forecasts of this substitution.  In theory, these 
two models could be the same in large samples generated from normally distributed returns.  
However, the relative ability of these two competing models to forecast for small samples of 
actual returns is unknown.  In this study, we use three approaches to compare these two models.  
First, we compare the inputs, the arithmetic mean and the sum of the geometric mean plus half 
the variance, of the two competing models.  Next, we compare the forecasts of the two 
competing models.  Last, we compare the forecasting errors of the two competing models.  We 
find statistically significant differences in the inputs and the forecasts, but no meaningful 
difference in the models’ performance of forecasts as indicated by forecasting errors.  In light of 
these results, despite the statistical differences, we find no economic difference between the 
forecasting errors of the two models and recommend the simpler of the two models which uses 
the arithmetic mean. 

 

I. Introduction 

 When academicians develop competing models without testing the differences between 
the models, then practitioners and other academicians are uncertain which model is better to use.  
This problem is all the more confusing when two of the authors are the same for both models.  
Jacquier, Kane, and Marcus (2002) develop the first model as a weighted mean between the 
geometric mean and the sum of the geometric mean and half the variance, where the weights are 
determined by the relative importance of the estimation period and the forecasting period.  The 
second model is developed by Bodie, Kane, and Marcus (2008) is a similar model except the 
arithmetic mean is substituted for the sum of the geometric mean and half the variance.  
Although the second model references the first, no justification for the substitution is given.  This 
situation raises the question of the statistical significance and economic impact of this 
substitution.  The empirical exploration of this question in small samples of various short-term 
time horizons is the focus of this paper. 
 

Theoretically, in large samples with normally distributed returns that are independently 
and identically distributed through time, the arithmetic mean is exactly equal to the sum of the 
geometric mean and half the variance.  Hence, in theory, there should be no difference between 
these two forecasting models.  However, in small samples of real data, the distribution rates of 
return can change over time and exhibit serial correlation through time.  This leads to four 
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questions.  First, in small samples of actual rates of return, is the estimate of the arithmetic mean 
equal to the sum of the estimates of the geometric mean and half the variance?  Second, are 
forecasts generated by these two competing models equal to each other?  Third, if forecasts are 
generated from a variety of historical data, then are there economically significant differences in 
the forecasts of the two models?  Finally, given the analysis of the first three questions, then 
which model is preferable?  In this paper, we analyze the first three questions and then 
recommend the model of overall preference.  

 
 II. Literature Review 

 For decades there has been recurring interest in forecasts of long-term portfolio returns. 
Should the geometric or the arithmetic mean of past returns be used to forecast future returns of 
individual investments and portfolios? The existence of significant differences between the two 
measures, as some authors suggest, may have important implications on the valuation of assets, 
and the extent of the equity –bond premium (long-run difference return advantage of stocks over 
government bonds). The debate over arithmetic and geometric means started with the birth of 
portfolio theory. Markowitz (1952) first developed portfolio theory in terms of mean/variance 
optimization which assumed higher moments were zero.  This symmetrical distribution is 
consistent with normally distributed rates of return, not lognormally distributed rates of return.  
The mean used by Markowitz was the arithmetic mean. 

 
However, Latane (1959) showed that, if investors want to select the portfolio with highest 

terminal wealth, they would select the portfolio with the highest geometric mean return.  Elton 
and Gruber (1974 a) derive optimal portfolio theory for lognormally distributed returns.  Then in 
Elton and Gruber (1974 b), the authors show that if returns are lognormally distributed, then 
maximizing the geometric mean maximizes expected utility.  

 
Damodarian (2002) states “Conventional wisdom argues for the use of the arithmetic 

mean. In fact, if annual returns are uncorrelated over time, and our objective was to estimate the 
risk premium for the next year, the arithmetic mean is the best unbiased estimate of the premium.  
In reality, however, there are strong arguments that can be made for the use of geometric means.  
First, empirical studies seem to indicate that returns on stocks are negatively correlated over 
time. (See Fama and French 1988). Consequently, the arithmetic mean return is likely to 
overstate the premium.  Second, while asset pricing models may be single-period models, the use 
of these models to get expected returns over long periods (such as 5 or 10 years) suggests that the 
single period model may be much longer than a year.  In this context, the argument for geometric 
mean premiums becomes even stronger.”  

 
In contrast, when considering which is the superior measure of investment performance, 

the arithmetic mean or the geometric mean, Bodie, Kane, and Marcus (2002) state the following.  
“The geometric average has considerable appeal because it represents the constant rate of return 
we would have needed to earn in each year to match actual performance over some past 
investment period.  It is an excellent measure of past performance.  However, if our focus is on 
future performance, then the arithmetic average is the statistic of interest because it is an 
unbiased estimate of the portfolio’s expected future return (assuming, of course, that the  
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expected return does not change over time).  In contrast, because the geometric return over a 
sample period is always less than the arithmetic mean, it constitutes a downward-biased 
estimator of the stock’s expected return in any future year.”  Their example uses returns that are 
independent over time.  This statement does not consider any possible bias in the forecasting of 
terminal portfolio value that was first described by Blume (1974).  Although Blume considered 
this bias, his assumption of normally distributed returns did not result in a measure of this bias. 

 
Jacquier, Kane, and Marcus (2002) start with lognormal distributed stock price returns 

and state the simple mathematical fact that if the distribution of returns is known for certain, then 
the expected value of the distribution is the arithmetic mean.  However, if the true distribution of 
returns is not known, then sampling from the lognormal distribution with a right-hand skew 
introduces a bias that varies with the ratio of the length of the forecasting period and the length 
of the estimation period.  They propose a compound growth rate that provides unbiased estimates 
of future portfolio values as the following:   

 
G ( F / E ) + ( G + 1/2σ2 )( 1 – ( F / E ) )     (1) 
 

where G is the historical geometric mean of stock price returns, F is the forecast  horizon, and E 
is the estimation period.   
 

Based on this research article, Bodie, Kane, and Marcus (2008), in their popular MBA 
investment textbook, have the forecast of cumulative returns equals:  

 

    G ( F / E ) +  µ   ( 1 – ( F / E ) )                   (2) 
 

where µ  is the historical arithmetic mean of stock price returns.  In the above expression, the 

authors Bodie, Kane, and Marcus substituted the arithmetic mean for the geometric mean plus 
half the variance.  Jacquier, Kane, and Marcus state that for more volatile investments the 
difference in the arithmetic and geometric mean is larger than half the variance. This calls into 
question the substitution of the arithmetic mean into the forecasting model in the textbook by 
Bodie, Kane, and Marcus.  What is the impact of this substitution on the forecast of long term 
returns?  Additionally, Jacquier, Kane, and Marcus present only long term forecasts of large 
samples.  Practitioners are also interested in the accuracy of both forecasting models with short-
term forecasts in small samples.  Therefore, this paper proposes to compare the equivalence of 
these two models and the comparative accuracy of each model in a variety of settings. 

 

III. Data 

Our objective is to explore differences in sampling distributions characteristics of the 
forecasting models in a variety of settings. Therefore, we perform similar analysis on three 
different data sets. The first set uses rolling samples of the monthly returns of 10 randomly 
selected companies representing the different sectors in the economy from 1995 through 2007 
covering financial services, manufacturing, and technology sectors.  The companies returns used 
in this study with their ticker symbol in parentheses are: General Electric (GE), International 
Business Machines Corp. (IBM), Bank of America Corp (BAC), AT & T Inc (T), Texas 
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Instruments, Inc (TXN), The Boeing Co (BA), Dell Inc. (DELL), Walt Disney (DIS), American 
International Group Inc. (AIG), and Exxon Mobil Corp. (XOM).   

 
The second set consists of rolling samples of the rates of return on five asset classes 

(Treasury bills, intermediate–term Treasury bonds, long-term Treasury bonds, large cap stocks, 
and small cap stocks) from 1926 through 1995 given in Bodie, Kane, and Marcus (2002).  The 
first estimation period is 15 years covering 1926-1940 and subsequent15-year samples are 
repeated until 1995 resulting in 56 samples.  

 
The third data set starts with the second data set to generate rolling samples of mean-

variance optimized portfolios for given levels of risk aversion for each five year sample with 
ending date in 1935 through 1995.  The mean variance framework of the third data set requires 
knowledge of expected returns.  The implementation uses historical returns.  Mean-variance 
optimization framework efficiently allocates wealth to the five asset classes: small cap stocks, 
large cap stocks, long–term Treasury bonds, intermediate-term Treasury bonds, and treasury bills 
for different levels of investor preferences for high expected returns.  The procedure entails first 
computing the means and covariance matrix from actual sample of historical returns of the five 
asset classes. The sample size is set to be 10 years. The optimization is performed for five 
different levels of risk preferences: (1) minimum, (2) conservative, (3) moderate, (4) aggressive, 
and (5) maximum. We calculate minimum variance subject to maximum return, which is the 
highest mean return of asset class for the given period, by changing the weight of portfolio.  
Then we calculate returns on conservative, moderate, and aggressive portfolio plans. We set the 
risk aversion coefficient (A) as 1, 5, and 10 and keeping them constant we calculate expected 
returns, where A=1 is aggressive risk aversion coefficient and A=10 as conservative. We 
simultaneously calculate the utility (U= E(R) - 1/2σ2A) and expected returns. 

 
The use of rolling samples from these diverse data sets is intended to reveal the sampling 

distribution characteristics of these two models in small samples with different short-term 
forecasting horizons.  The issue of possible differences in sampling distribution properties 
between the estimates of the arithmetic mean and the sum of the geometric mean plus half the 
variance is the underlying reason for questioning the substitution of the first statistic for the 
second statistic by Bodie, Kane, and Marcus.  Additionally, the variation in the impact on 
forecasting errors from this substitution becomes apparent in the contrasting data sets. 

 
IV. Methodology 

To analyze the differences in the sampling distribution characteristics, we perform three 
types of tests on each of the three data sets.  First we test if the estimate of the arithmetic mean is 
equal to the estimate of the sum of the geometric mean plus half the variance.   

Sampling the monthly stock returns of 10 randomly selected companies from February 
1995- December 2007, we estimate the arithmetic mean, geometric mean and the variance using 
96 rolling samples of 60 months. Using the average of the statistics of the 96 rolling samples, we 
calculate the difference between the estimate of the arithmetic mean and the estimate of the sum 
of the geometric mean and half the variance.  We perform similar test on the second sample 
covering five asset classes (Treasury bills, intermediate–term Treasury bonds, long-term  
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Treasury bonds, large cap stocks, and small cap stocks).  The estimation period is 15 rolling 
years starting with the first sample covering 1926-1940.  We estimate the arithmetic mean, 
geometric mean and the variance using rolling samples which gives us 56 estimates.  We conduct 
similar test on the third data set of returns generated from optimized portfolios over 46 rolling 
samples from 1936-1995.    

 
 Next, we forecast future returns using Jacquier, Kane, and Marcus (2003) proposed 
weighted average and Bodie, Kane and Marcus (2008) with the substitution of the sum of the 
geometric mean and half the variance for the arithmetic mean.  For the first data set, we calculate 
monthly forecast returns over 1 year and 7 year horizons, based on 5-year estimation periods for 
10 randomly selected individual company stocks returns.  Two forecast periods are chosen to see 
the influence of the difference between the forecast and estimation periods on the forecasted 
returns  as the models by Jacquier, Kane, and Marcus (2003) and Bodie, Kane, and Marcus 
(2008) are weighted averages of geometric and arithmetic means with the weights measured by 
the relative importance of the forecast and estimation periods. For the second data set, using 15 
year-estimation periods with annual returns of the five asset classes, we forecast future returns 
over a short term horizon of 10 years, and a long term horizon of 20 years. By using 15- year 
estimation periods, we end up with 56 rolling samples for the 10-year forecasts and the 20-year 
forecasts.  Similar estimation period short term (10 years) and long term (20 years) forecast 
horizons are used for the third data set comprising optimized portfolio annual rates of returns.  
We have 36 rolling samples for the short-term and the long term forecasts. We calculate the 
difference of the sample mean forecasts of the two models and perform a t-test for statistical 
significance in the difference.  This test allows us to determine whether both models yield similar 
forecasts.       
  
 For the third hypothesis of the economic significance of any difference in the forecasts of 
the two models, our criterion is that one model has low forecasting error when the other has high 
forecasting error.  The procedure for testing this hypothesis is to first estimate the forecasting 
errors using Jacquier, Kane and Marcus (2003) formula and actual returns and forecasting error 
using Bodie, Kane, and Marcus (2008) formula and actual returns.  We apply this procedure to 
all data sets.  We test for economic significance in the difference in forecasts over long-term and 
short-term time horizons.  We want to explore small sample properties in different time horizons. 
 
V. Results 

Table 1 reports the results pertaining to the first hypothesis whether it is appropriate to 
substitute the arithmetic mean for the sum of the geometric mean plus half the variance. We test 
this hypothesis with a series of t-tests of the difference between the estimate of the arithmetic 
mean of rates of return and the estimates of the sum sample geometric mean plus half the 
variance.   With the first data set covering monthly returns of ten randomly selected individual 
stocks, nine out of the ten there was statistically significant difference in the estimates.  With the 
second data set, we find statistically significant difference between the estimates using annual 
rates of return of five asset classes. With the third data set, we find statistically significant 
difference between the estimates using annual rates of return generated from five optimized 
portfolios with varying degrees of risk aversion.  Therefore, based on these statistically 
significant differences in three different samples, we conclude that the arithmetic mean is not 
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equivalent to the sum of the geometric mean plus half the variance in small samples.  
 
Table 2 shows the results of the second hypothesis whether the forecasts generated from 

the two models are the same.  We test this hypothesis with a series of t-tests in the mean 
difference in the forecasts.  With the first data set, eighteen out of twenty differences in forecasts 
were statistically different.   With the second and the third data set, all the differences in the 
forecasts, short-term and long-term, are statistically significant.  Therefore, based on these 
statistically significant differences in three different samples, we conclude that the two models 
yield different forecasts.   

 

Table 3 reports the results for the hypothesis of the economic significance of any 
difference in the forecasts of the two models.  For economically significant difference in the 
forecasting models, our criterion is that one model has low forecasting error when the other has 
high forecasting error.  For data set one, the estimation period is 5 years and the forecast periods 
are 1 and 7 years.  The two forecasting errors are strikingly similar. Over the short-term forecast 
horizon, the difference between the actual return and forecast is statistically significant for five 
individual stocks. However, over the longer horizon forecast period, 7 years, nine out of ten 
individual stock returns forecast error is statistically significant and negative (Table 3a).  For 
data set two, using five asset classes annual rates of return, the forecasting errors are negative 
and statistically significant for the five asset classes for the short-term forecast (10 years). 
Similar results are found for the long-term forecasts (20 years) except that the forecasting error 
for small stock is no longer statistically significant (Table 3b).  The third data set, using returns 
from optimized portfolios, the forecasting errors are statistically significant for three out of the 
five optimized portfolios.  Overall, by the criterion stated above, the two models forecasting 
ability has no economically significant difference.       

 
V. Conclusion  

 In conclusion, we evaluated the differences between two competing forecasting models 
of rates of return.  The first model by Jacquer, Kane, and Marcus (2002) is a weighted mean 
between the geometric mean and the sum of the geometric mean and half the variance, where the 
weights are determined by the relative importance of the estimation period and the forecasting 
period.  The second model by Bodie, Kane, and Marcus (2008) is a similar model except the 
arithmetic mean is substituted for the sum of the geometric mean and half the variance.  
Academics and practitioners are interested in choosing between these two competing models.   

 
Theoretically, in large samples with normally distributed returns, the arithmetic mean is 

exactly equal to the sum of the geometric mean and half the variance.  So, in theory, there should 
be no difference between these two forecasting models.  However, when we used small samples 
of actual rates of returns from three different data sets, (ten individual stocks, five asset classes, 
and five optimized portfolios), our analysis finds there is a statistically significant difference 
between estimates of the arithmetic mean and estimates of the sum of the geometric mean and 
half the variance.  This difference between these estimates results in a statistically significant 
difference in forecasts generated by the two models.  Looking at forecasting errors of the two  
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models in a variety of data, we find that the forecasting errors are very similar, and that generally  
when one model works well, so does the other.  So while there are statistically significant 
differences in forecasts of these two models, there is no economically significant difference in 
their forecasting errors.  As the second model is more compact, simpler, and performs as well as 
the first, it is the preferable forecasting model to use. 
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Table I 

Test for the difference between the sum of the geometric mean plus half the variance and 
arithmetic mean of the rates of return, (t test statistics with significance in italics). 
 

DIFFERENCE  =  ( G + 1/2σ2 )  - µ  

 
Data Set One 

For ten individual companies, the mean difference in monthly percent return. 
 

 
AIG 
 

 
T 

 
BA 

 
BAC 

 
DELL 

 
DIS 

 
GE 

 
IBM 

 
TXN 

 
XOM 

 
0.01 
15.10*** 

 

 
0.013 
26.17*** 

 
-0.013 
-10.3*** 

 
-0.001 
-3.36*** 

 
0.060 
14.35*** 

 
0.001 
1.23 

 
0.01 
10.99*** 

 
0.023 
21.8*** 

 
0.037 
8.95*** 

 
0.01 
30.26*** 

 

 
Data Set Two 

For five asset classes, the mean difference in annual percent return. 
 

 
 
Treasury Bills 
 

 
Intermediate-Term 
Treasury Bonds 

 
Long-Term 
Treasury Bonds 

 
 
Large Stock 

 
 
Small Stock 

 
0.0023 
6.27*** 

 

 
0.0263 
5.86*** 

 
0.0298 
6.95*** 

 
0.2245 
17.36*** 

 
1.9810 
8.10*** 

 
 
Data Set Three 

For five optimized portfolios, the mean difference in annual percent returns. 
 

 
Minimum 
 

 
Conservative 

 
Moderate 

 
Aggressive 

 
Maximum 

 
0.002 
5.81*** 
 

 
0.015 
18.05*** 

 
0.018 
13.26*** 

 
0.041 
15.0*** 

 
0.038 
16.2*** 
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Table II 

Test for the difference between forecasted return by the original forecasting model by 
Jackier, Kane, and Marcus minus the simplified forecasting model by Bodie, Kane, and Marcus, 
(t test statistics with significance in italics). 

DIFFERENCE = [ G (F/E) + ( G + 1/2σ2 )( 1 – (F/E) ) ] – [ G (F/E) +  µ   ( 1 – (F/E) ) ] 

 
Data Set One 

For ten individual companies, the difference of forecasts based on monthly percent return. 
Short-term forecast 

AIG T BA BAC DELL DIS GE IBM TXN XOM 

0.005 
15.1*** 

0.011 
31.57*** 

-0.013 
-10.3*** 

-0.002 
-4.06*** 

0.046 
14.35*** 

0.001 
-1.23 

0.006 
13.25*** 

0.020 
26.28*** 

0.030 
10.8*** 

0.005 
30.26*** 

 
Long-term forecast 

AIG T BA BAC DELL DIS GE IBM TXN XOM 

-0.0025 
-15.1*** 

-0.0054 
-31.5*** 

0.0052 
10.27*** 

0.001 
4.06*** 

-0.043 
-14.3*** 

-0.0004 
1.23 

-0.0028 
-13.2*** 

-0.010 
-26.3*** 

-0.0148 
-10.8*** 

-0.002 
-30.2*** 

 
Data Set Two 
For five asset classes, the difference of forecasts of annual percent return. 
Short-term forecast 

 
Treasury Bills 

Intermediate-Term 
Treasury Bonds 

Long-Term 
Treasury Bonds 

 
Large Stock 

 
Small Stock 

0.0008 
6.27*** 

0.0088 
5.86*** 

0.0099 
6.95*** 

0.0748 
17.36*** 

0.6603 
8.10*** 

 
Long-term forecast 

 
Treasury Bills 

Intermediate-Term 
Treasury Bonds 

Long-Term 
Treasury Bonds 

 
Large Stock 

 
Small Stock 

-0.0008 
-6.27*** 

-0.0088 
-5.86*** 

-0.0099 
-6.95*** 

-0.0748 
-17.36*** 

-0.6603 
-8.10*** 

 
Data Set Three 

For five optimized portfolios, the difference of forecasts of annual percent return. 
Short-term forecast 

Minimum Conservative Moderate Aggressive Maximum 

0.0003 
5.08*** 

0.0044 
17.8*** 

0.0047 
16.0*** 

0.0122 
12.9*** 

0.0111 
13.1*** 

 
Long-term forecast 

Minimum Conservative Moderate Aggressive Maximum 

-0.0003 
-10.5*** 

-0.0049 
-19.4*** 

-0.0048 
-13.7*** 

-0.0127 
-10.4*** 

-0.0117 
-10.5*** 
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Table III (a) 

The forecasting error of the original forecasting model by Jacquier, Kane, and Marcus 
and the simplified forecasting model by Bodie, Kane, and Marcus. 
 

ERROR OF ORIGINAL MODEL  = [ G (F/E) + ( G + 1/2σ2 )( 1 – (F/E) ) ]  - ACTUAL 
 

ERROR OF SIMPLIFIED MODEL = [ G (F/E) +  µ   ( 1 – (F/E) ) ]  - ACTUAL 

 
Data Set One 

For ten individual companies, the mean forecasting error based on monthly percent rate 
of return (t statistic in parenthesis) 
 
Short-term forecast 
 
Original model forecasting error 
 

AIG T BA  BAC  DELL  DIS GE IBM TXN XOM 

1.22 
5.04*** 

0.10 
0.32 

-0.24 
-0.80 

0.02 
0.15 

3.16 
7.18*** 

0.30 
1.01 

1.09 
3.69*** 

1.15 
4.29*** 

2.48 
4.80*** 

-0.07 
-0.36 

 
Simplified model forecasting error 
 

AIG T BA  BAC  DELL  DIS GE IBM TXN XOM 

1.22 
5.06*** 

0.09 
0.29 

-0.23 
-0.76 

0.01 
0.13 

3.10 
7.10*** 

0.3 
1.01 

1.09 
3.67*** 

1.13 
4.21*** 

2.45 
4.76*** 

-0.07 
-0.39 

Long-term forecast 
 
Original model forecasting error 
 

AIG T BA  BAC  DELL  DIS GE IBM TXN XOM 

2.64 
24.6*** 

0.97 
15.3*** 

-0.12 
-0.85 

-0.25 
-2.45** 

6.05 
13.8*** 

1.06 
9.10*** 

3.00 
39.4*** 

2.44 
19.4*** 

3.96 
13.0*** 

0.58 
12.6*** 

 
Simplified model forecasting error 
 

AIG T BA  BAC  DELL  DIS GE IBM TXN XOM 

2.64 
24.5*** 

0.97 
15.4*** 

-0.13 
-0.85 

-0.26 
-2.49** 

6.09 
13.9*** 

1.07 
9.13*** 

3.00 
39.5*** 

2.45 
19.5*** 

4.00 
13.1*** 

0.58 
12.7*** 
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Table III (b) 

The forecasting error of the original forecasting model by Jacquier, Kane, and Marcus 
and the simplified forecasting model by Bodie, Kane, and Marcus. 
 

ERROR OF ORIGINAL MODEL  = [G (F/E) + (G + 1/2σ2 )( 1 – (F/E) ) ]  - ACTUAL 
 

ERROR OF SIMPLIFIED MODEL = [G (F/E) + µ   (1 – (F/E))]  - ACTUAL 

 
Data Set Two 

For five asset classes, the forecasting error of annual percent returns. 
 
Short-term forecast 
 
Original model forecasting error 
 

Treasury Bills Intermediate-Term 
Treasury Bonds 

Long-Term 
Treasury Bonds 

Large Stock Small Stock 

-2.02 
-8.04*** 

-1.99 
-4.75*** 

-1.57 
-3.01** 

-1.83 
-1.45 

3.17 
1.99* 

 
 
Simplified model forecasting error 
 

Treasury Bills Intermediate-Term 
Treasury Bonds 

Long-Term 
Treasury Bonds 

Large Stock Small Stock 

-2.02 
-8.05*** 

-2.00 
-4.76*** 

-1.58 
-3.02** 

-1.91 
-1.51 

2.39 
1.49 

Long-term forecast 
 
 
Original model forecasting error 

Treasury Bills Intermediate-Term 
Treasury Bonds 

Long-Term 
Treasury Bonds 

Large Stock Small Stock 

-3.17 
-14.65*** 

-2.40 
-5.74*** 

-1.62 
-2.66** 

-1.41 
-1.02 

-1.61 
-0.93 

 
 
Simplified model forecasting error 

Treasury Bills Intermediate-Term 
Treasury Bonds 

Long-Term 
Treasury Bonds 

Large Stock Small Stock 

-3.17 
-14.65*** 

-2.39 
-5.74*** 

-1.62 
-2.65** 

-1.32 
-0.95 

-0.74 
-0.43 
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Table III (c) 

The forecasting error of the original forecasting model by Jacquier, Kane, and Marcus 
and the simplified forecasting model by Bodie, Kane, and Marcus. 
 

ERROR OF ORIGINAL MODEL  = [G (F/E) + (G + 1/2σ2)( 1 – (F/E) ) ]  - ACTUAL 
 

ERROR OF SIMPLIFIED MODEL = [G (F/E) + µ  (1 – (F/E)) ]  - ACTUAL 

 
Data Set Three 

For five optimized portfolios, the forecasting error of annual percent return. 
 
Short-term forecast 
 
Original model forecasting error 
 
 

Minimum Conservative Moderate  Aggressive Maximum 

-2.55 
-8.46*** 

-0.82 
-0.96 

-0.17 
-0.16 

2.08 
2.18** 

3.14 
3.93*** 

 

 
Simplified model forecasting error 
 

Minimum Conservative Moderate  Aggressive Maximum 

-2.55 
-8.46*** 

-0.82 
-0.96 

-0.17 
-0.16 

2.07 
2.17** 

3.13 
3.92*** 

 

Long-term forecast 
 
Original model forecasting error 
 

Minimum Conservative Moderate  Aggressive Maximum 

-3.15 
-9.60*** 

1.05 
1.67 

2.44 
2.86** 

5.06 
7.29*** 

5.37 
7.20*** 

 

Simplified model forecasting error 
 

Minimum Conservative Moderate  Aggressive Maximum 

-3.15 
-9.59*** 

1.05 
1.68 

2.44 
2.87** 

5.07 
7.30*** 

5.38 
7.18*** 
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